a note on 3-prime cordial graphs
نویسندگان
چکیده
let g be a (p, q) graph. let f : v (g) → {1, 2, . . . , k} be a map. for each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of g if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1. a graph with a k-prime cordial labeling is called a k-prime cordial graph. in this paper we investigate 3- prime cordial labeling behavior of :union: of a 3-prime cordial graph and a path pn.
منابع مشابه
A note on 3-Prime cordial graphs
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
متن کامل4-prime Cordial Graphs Obtained from 4-prime Cordial Graphs
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a function. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if ∣∣vf (i)− vf (j)∣∣ 6 1, i, j ∈ {1, 2, . . . , k} and ∣∣ef (0)− ef (1)∣∣ 6 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled ...
متن کامل3-Equitable Prime Cordial Labeling of Graphs
A 3-equitable prime cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, ..., |V |} such that if an edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 and gcd(f(u) + f(v), f(u)−f(v)) = 1, the label 2 if gcd(f(u), f(v)) = 1 and gcd(f(u) + f(v), f(u)− f(v)) = 2 and 0 otherwise, then the number of edges labeled with i and the number of edges labeled with j differ b...
متن کاملPD-prime cordial labeling of graphs
vspace{0.2cm} Let $G$ be a graph and $f:V(G)rightarrow {1,2,3,.....left|V(G)right|}$ be a bijection. Let $p_{uv}=f(u)f(v)$ and\ $ d_{uv}= begin{cases} left[frac{f(u)}{f(v)}right] ~~if~~ f(u) geq f(v)\ \ left[frac{f(v)}{f(u)}right] ~~if~~ f(v) geq f(u)\ end{cases} $\ for all edge $uv in E(G)$. For each edge $uv$ assign the label $1$ if $gcd (p_{u...
متن کاملPrime Cordial Labeling of Some Graphs
In this paper we prove that the split graphs of 1,n K and are prime cordial graphs. We also show that the square graph of is a prime cordial graph while middle graph of is a prime cordial graph for . Further we prove that the wheel graph admits prime cordial labeling for . , n n B n , n n B n P 8 4 n
متن کاملPrime and Prime Cordial Labeling for Some Special Graphs
A graph G(V,E) with vertex set V is said to have a prime labeling if its vertices are labeled with distinct integers 1, 2, . . . , |V | such that for each edge xy ∈ E the labels assigned to x and y are relatively prime. A prime cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, . . . , |V |} such that if each edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
journal of algorithms and computationجلد ۴۸، شماره ۱، صفحات ۴۵-۵۵
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023